

y(t) = 40 is an asymptotically **STABLE** equilibrium sol'n to dy/dt = -0.3(y-40)

y(t) = 20 is an asymptotically **UNSTABLE** equilibrium sol'n to dy/dt = 0.3(y-20)

y(t) = 20 is an asymptotically **SEMISTABLE** equilibrium sol'n to $dy/dt = 0.05(y-20)^2$

$$dy/dt = cos(y)$$

 $dy/dt = (2-y) (y-5)^2$

Some population models

y(t) = "size of population at time t" dy/dt = "rate of change" (i.e. number of people per year by which population increases)

Model 1: Unrestricted growth (or Law of Natural Growth). "rate is proportional to population size" r = ``prop. constant''

= "relative growth rate"

Model:
$$\frac{dy}{dt} = ry$$
, $y(0) = y_0$

Solution: $y(t) = y_0 e^{rt}$

dy/dt = ry, with r > 0

Restricted growth:

There are many models for restricted growth. Most look like

$$\frac{dy}{dt} = h(y)y$$

where $h(y) \approx r$ when y is "small", but as y approaches some capacity C, h(y) goes to zero.

Model 2: The Logistic Equation r = relative growth rate K = capacity

Model: $\frac{dy}{dt} = r\left(1 - \frac{y}{K}\right)y$, $y(0) = \frac{1}{2}$

Solution: $y(t) = \frac{y_0 K}{y_0 + (K - y_0)e^{-rt}}$

dy/dt = r(1-y/K)y, with r, K > 0

Assume the population dies out if it is below a certain "threshold", but otherwise behaves like restricted growth. Here is a model for that type of population:

Model 3: Restricted growth with a threshold

r = relative growth rate

K = capacity

T = threshold

$$\text{Model:} \frac{dy}{dt} = -r\left(1 - \frac{y}{T}\right)\left(1 - \frac{y}{K}\right)y$$

Solution:
$$\frac{y(y-K)^{T/(K-T)}}{(y-T)^{K/(K-T)}} = De^{-rt}$$

$$dy/dt = -r(1-y/T)(1-y/K)y$$
,
with $r > 0$ and $K > T > 0$.